Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 15 trang 7 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.8 trên 53 phiếu

Chứng minh

Chứng minh:

a) \(9 + 4\sqrt 5  = {\left( {\sqrt 5  + 2} \right)^2}\);

b) \(\sqrt {9 - 4\sqrt 5 }  - \sqrt 5  =  - 2\);

c) \({\left( {4 - \sqrt 7 } \right)^2} = 23 - 8\sqrt 7 \);

d) \(\sqrt {23 + 8\sqrt 7 }  - \sqrt 7  = 4.\)

Gợi ý làm bài

a) Ta có:

 

\(\eqalign{
& VT =9 + 4\sqrt 5 = 4 + 2.2\sqrt 5 + 5 \cr
& = {2^2} + 2.2\sqrt 5 + {\left( {\sqrt 5 } \right)^2} = {\left( {2 + \sqrt 5 } \right)^2} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Ta có:

 \(VT =\sqrt {9 - 4\sqrt 5 }  - \sqrt 5  = \sqrt {5 - 2.2\sqrt 5  + 4}  - \sqrt 5 \)

\(\eqalign{
& = \sqrt {{{\left( {\sqrt 5 } \right)}^2} - 2.2\sqrt 5 + {2^2}} - \sqrt 5 \cr
& = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt 5 \cr} \)

\(\left| {\sqrt 5  - 2} \right| - \sqrt 5  = \sqrt 5  - 2 - \sqrt 5  =  - 2\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

c) Ta có:

 \(\eqalign{
&VT = {\left( {4 - \sqrt 7 } \right)^2} = {4^2} - 2.4.\sqrt 7 + {\left( {\sqrt 7 } \right)^2} \cr
& = 16 - 8\sqrt 7 + 7 = 23 - 8\sqrt 7 \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

d) Ta có:

 \(\eqalign{
& VT =\sqrt {23 + 8\sqrt 7 } - \sqrt 7 \cr
& = \sqrt {16 + 2.4.\sqrt 7 + 7} - \sqrt 7 \cr} \)

 \(\eqalign{
& =\sqrt {{4^2} + 2.4.\sqrt 7 + {{\left( {\sqrt 7 } \right)}^2}} - \sqrt 7 \cr
& = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \cr} \)

= \(\left| {4 + \sqrt 7 } \right| - \sqrt 7  = 4 + \sqrt 7  - \sqrt 7  = 4\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan