Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 150 trang 98 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.4 trên 8 phiếu

Chứng minh rằng các tia phân giác của các góc hình chữ nhật đó cắt nhau tạo thành một hình vuông.

Cho một hình chữ nhật có hai cạnh kề không bằng nhau. Chứng minh rằng các tia phân giác của các góc hình chữ nhật đó cắt nhau tạo thành một hình vuông.

Giải:                                                                    

Gọi giao điểm các đường phân giác của các góc: \(widehat A,\widehat B,\widehat C,\widehat D\)theo thứ tự cắt nhau tại E, H, F, G.

Trong ∆ ADG ta có: \(\widehat {GAD} = {45^0};\widehat {GDA} = {45^0}\) (gt)

⇒ ∆ GAD vuông cân tại G

\( \Rightarrow \widehat {AGD} = {90^0}\)và GD = GA

\( \Rightarrow \widehat {FGE} = \widehat {AGD} = {90^0}\)

Trong ∆ BHC ta có:

\(\widehat {HBC} = {45^0};\widehat {HCB} = {45^0}\) (gt)

⇒ ∆HBC vuông cân tại H

\( \Rightarrow \widehat {BHC} = {90^0}\)  và HB = HC

Trong ∆ FDC ta có: \({\widehat D_1} = {45^0};{\widehat C_1} = {45^0}\) (gt)

⇒ ∆ FDC vuông cân tại F \( \Rightarrow \widehat F = {90^0}\) và FD = FC

nên tứ giác EHFG là hình chữ nhật (vì có ba góc vuông)

Xét ∆ GAD và ∆ HBC :

\(\widehat {GAD} = \widehat {HBC} = {45^0}\)

AD = BC (tính chất hình chữ nhật)

\(\widehat {GDA} = \widehat {HCB} = {45^0}\)

Do đó: ∆ GAD = ∆ HBC (g.c.g) ⇒ GD = HC

FD = FC (chứng minh trên)

Suy ra: FG = FH

Vậy hình chữ nhật EHFG có hai cạnh kề bằng nhau nên là hình vuông.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan