Chứng minh rằng trong hình thang các tia phân giác của hai góc kề một cạnh bên vuông góc với nhau.
Giải:
Giải sử hình thang ABCD có AB// CD
\(\eqalign{
& {\widehat A_1} = {\widehat A_2} = {1 \over 2}\widehat A(gt) \cr
& {\widehat D_1} = {\widehat D_2} = {1 \over 2}\widehat D(gt) \cr} \)
Mà \(\widehat A + \widehat D = {180^0}\) (hai góc trong cùng phía bù nhau)
Suy ra:
\({\widehat A_1} + {\widehat D_1} = {1 \over 2}(\widehat A + \widehat D )= {90^0}\)
Trong ∆ AED ta có :
\(\widehat {AED} + {\widehat A_1} + {\widehat D_1} = {180^0}\) (tổng ba góc trong tam giác)
\( \Rightarrow \widehat {AED} = {180^0} - \left( {{{\widehat A}_1} + {{\widehat D}_1}} \right) = {180^0} - {90^0} = {90^0}\)
Vậy AE ⊥ DE
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục