Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 18 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.8 trên 75 phiếu

Chứng tỏ rằng:

Chứng tỏ rằng:

a. \({x^2} - 6x + 10 > 0\)  với mọi \(x\)

b. \(4x - {x^2} - 5 < 0\)  với mọi \(x\)

Giải:

a. \({x^2} - 6x + 10 = {x^2} - 2.x.3 + 9 + 1 = {\left( {x - 3} \right)^2} + 1\)

Ta có: \({\left( {x - 3} \right)^2} \ge 0\) với mọi \(x\)  nên \({\left( {x - 3} \right)^2} + 1 > 0\)  với mọi \(x\)

Vậy \({x^2} - 6x + 10 > 0\) với mọi \(x\)

 

b. \(4x - {x^2} - 5 =  - \left( {{x^2} - 4x + 4} \right) - 1 =  - {\left( {x - 2} \right)^2} - 1\)

Ta có: \({\left( {x - 2} \right)^2} \ge 0\) với mọi x

⇒\( - {\left( {x - 2} \right)^2} \le 0\)  với mọi \(x\)

⇒\( - {\left( {x - 2} \right)^2} - 1 < 0\)  với mọi \(x\)

Vậy \(4x - {x^2} - 5 < 0\) với mọi \(x\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Bài viết liên quan