Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 19 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.7 trên 63 phiếu

Tìm giá trị nhỏ nhất của các đa thức:

Tìm giá trị nhỏ nhất  của các đa thức:

a. P\( = {x^2} - 2x + 5\)

b. Q\( = 2{x^2} - 6x\)

c. M\( = {x^2} + {y^2} - x + 6y + 10\)

Giải:                                   

a. P\(= {x^2} - 2x + 5)\\( = {x^2} - 2x + 1 + 4 = {\left( {x - 1} \right)^2} + 4\)

Ta có: 

\({\left( {x - 1} \right)^2} \ge 0 \Rightarrow {\left( {x - 1} \right)^2} + 4 \ge 4\)

\( \Rightarrow P = {x^2} - 2x + 5 = {\left( {x - 1} \right)^2} + 4 \ge 4\)

\( \Rightarrow P = 4\)  là giá trị bé nhất ⇒ \({\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1\)

Vậy P=4 là giá trị bé nhất của đa thức khi  

b. Q\( = 2{x^2} - 6x\)\( = 2\left( {{x^2} - 3x} \right) = 2\left( {{x^2} - 2.{3 \over 2}x + {9 \over 4} - {9 \over 4}} \right)\)

 \( = 2\left[ {{{\left( {x - {3 \over 2}} \right)}^2} - {9 \over 4}} \right] = 2{\left( {x - {3 \over 2}} \right)^2} - {9 \over 2}\)

Ta có:

\({\left( {x - {3 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x - {3 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x - {3 \over 2}} \right)^2} - {9 \over 2} \ge  - {9 \over 2}\)

       \( \Rightarrow Q =  - {9 \over 2}\) là giá trị nhỏ nhất \( \Rightarrow {\left( {x - {3 \over 2}} \right)^2} = 0 \Rightarrow x = {3 \over 2}\)

       Vậy \(Q =  - {9 \over 2}\)  là giá trị bé nhất của đa thức \(x = {3 \over 2}\)

c.

\(\eqalign{  & M = {x^2} + {y^2} - x + 6y + 10 = \left( {{y^2} + 6y + 9} \right) + \left( {{x^2} - x + 1} \right)  \cr  &  = {\left( {y + 3} \right)^2} + \left( {{x^2} - 2.{1 \over 2}x + {1 \over 4} + {3 \over 4}} \right) = {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} \cr} \)

Ta có:

\(\eqalign{  & {\left( {y + 3} \right)^2} \ge 0;{\left( {x - {1 \over 2}} \right)^2} \ge 0  \cr  &  \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} \ge 0 \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4} \cr} \)

\( \Rightarrow M = {3 \over 4}\)  là giá trị nhỏ nhất khi \({\left( {y + 3} \right)^2} = 0\)

\( \Rightarrow y =  - 3\)  và \({\left( {x - {1 \over 2}} \right)^2} = 0 \Rightarrow x = {1 \over 2}\)

Vậy \(M = {3 \over 4}\) là giá trị bé nhất tại \(y =  - 3\) và \(x = {1 \over 2}\)

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Bài viết liên quan