Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 19 trang 241 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 19 trang 241 SBT Đại số 10 Nâng cao

 Tìm giá trị nhỏ nhất của hàm số \(g\left( x \right) = x + \dfrac{1}{{x - 2}}\) với \(x > 2\).

Giải:

\(\begin{array}{l}x + \dfrac{1}{{x - 2}} = x - 2 + \dfrac{1}{{x - 2}} + 2\\ \ge 2\sqrt {\left( {x - 2} \right)\dfrac{1}{{x - 2}}}  + 2 = 4\end{array}\)

(vì \(x - 2 > 0\))

Đẳng thức xảy ra khi \(x = 3\).

Vậy giá trị nhỏ nhất của \(g\left( x \right)\) là 4.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan