Tìm a và b:
a) Để đường thẳng y = ax + b đi qua hai điểm A (-5; 3), \(B\left( {{3 \over 2}; - 1} \right)\);
b) Để đường thẳng \(ax - 8y = b\) đi qua điểm M (9; -6) và đi qua giao điểm của hai đường thẳng (d1): \(2x + 5y = 17,\) (d2): \(4x - 10y = 14\)
Giải
a) Để đường thẳng y = ax + b đi qua hai điểm A(-5; 3) và \(B\left( {{3 \over 2}; - 1} \right)\); nên tọa độ của A và B nghiệm đúng phương trình đường thẳng:
Điểm A: 3 = -5a + b
Điểm B: \( - 1 = {3 \over 2}a + b \Leftrightarrow 3a + 2b = - 2\)
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 5a + b = 3} \cr
{3a + 2b = - 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{3a + 2\left( {3 + 5a} \right) = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{13a = - 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{a = - {8 \over {13}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - {1 \over {13}}} \cr
{a = - {8 \over {13}}} \cr} } \right. \cr} \)
Vậy hệ số \(a = - {8 \over {13}};b = - {1 \over {13}}\)
Đường thẳng cần tìm \(y = - {8 \over {13}}x - {1 \over {13}}\)
b) Tọa độ giao điểm của hai đường thẳng (d1): \(2x + 5y = 17,\) (d2): \(4x - 10y = 14\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2x + 5y = 17} \cr
{4x - 10y = 14} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x + 5y = 17} \cr
{2x - 5y = 7} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = {{7 + 5y} \over 2}} \cr
{2\left( {{{7 + 5y} \over 2}} \right) + 5y = 17} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = {{7 + 5y} \over 2}} \cr
{10y = 10} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = {{7 + 5y} \over 2}} \cr
{y = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 6} \cr
{y = 1} \cr} } \right. \cr} \)
Giao điểm của (d1) và (d2): A(6; 1)
Đường thẳng ax – 8y = b đi qua hai điểm M(9; -6) và A(6; 1) nên tọa độ của A và M nghiệm đúng phương trình đường thẳng.
Điểm M: 9a + 48 = b
Điểm A: 6a – 8 = b
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{9a + 48 = b} \cr
{6a - 8 = b} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{9a + 48 = 6a - 8} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{3a = - 56} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{a = - {{56} \over 3}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - 120} \cr
{a = - {{56} \over 3}} \cr} } \right. \cr} \)
Vậy hằng số \(a = - {{56} \over 3};b = - 120\).
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục