Câu 3.1 trang 10 Sách bài tập (SBT) Toán 9 tập 2
Tìm a và b để hệ
\(\left\{ {\matrix{
{ax + by = 17} \cr
{3bx + ay = - 29} \cr} } \right.\)
có nghiệm là (x; y) = (1; -4)
Giải
Cặp (x; y) = (1; -4) là nghiệm của hệ phương trình. Thay x = 1; y = -4 vào hệ phương trình ta có:
\(\eqalign{
& \left\{ {\matrix{
{a - 4b = 17} \cr
{3b - 4a = - 29} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{3b - 4\left( {4b + 17} \right) = - 29} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{3b - 16b - 68 = - 29} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{ - 13b = 39} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{b = - 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = 5} \cr
{b = - 3} \cr} } \right. \cr} \)
Vậy hằng số a = 5; b = -3
Câu 3.2 trang 10 Sách bài tập (SBT) Toán 9 tập 2
Giải hệ phương trình:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{\left( {x + y + 2} \right)\left( {x + 2y - 5} \right) = 0} \cr} } \right.\)
Giải
\(\left\{ {\matrix{
{2x - y = 5} \cr
{\left( {x + y + 2} \right)\left( {x + 2y - 5} \right) = 0} \cr} } \right.\)
Ta đưa về giải hai hệ phương trình:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + y + 2 = 0} \cr} } \right.\)
hoặc
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + 2y - 5 = 0} \cr} } \right.\)
Giải hệ:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + y + 2 = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x + 2x - 5 + 2 = 0} \cr} } \right.\)
\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{3x - 3 = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x = 1} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = - 3} \cr
{x = 1} \cr} } \right. \cr} \)
Giải hệ:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + 2y - 5 = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x + 2\left( {2x - 5} \right) - 5 = 0} \cr} } \right.\)
\(\eqalign{
& \left\{ {\matrix{
{y = 2x - 5} \cr
{5x - 15 = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x = 3} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 1} \cr
{x = 3} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có hai nghiệm
\(\left( {{x_1};{y_1}} \right) = \left( {1; - 3} \right)\) và \(\left( {{x_2};{y_2}} \right) = \left( {3;1} \right)\).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục