Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 28 trang 104 Sách Bài Tập (SBT) Toán 9 Tập 2

Bình chọn:
3.8 trên 9 phiếu

Chứng minh rằng dây A1A8 vuông góc với dây A3A16.

Các điểm \({A_1},{A_2},....,{A_{19}},{A_{20}}\) được sắp xếp theo thứ tự đó trên đường tròn (O) và chia đường tròn thành 20 cung bằng nhau. Chứng minh rằng dây \({A_1}{A_8}\) vuông góc với dây \({A_3}{A_{16}}\).

Giải

Đường tròn (O) được chia thành 20 cung bằng nhau nên số đo mỗi cung bằng

 3600: 20 = 180.

Gọi giao điểm của A1A8 và A3A16 là I.

Ta có:  sđ \(\overparen{{A_1}{A_3}}\) \( = {2.18^0} = {36^0}\)

\(\overparen{{A_8}{A_16}}\) \( = {8.18^0} = {144^0}\)

Ta có: \(\widehat {{A_1}I{A_3}} = {1 \over 2}\) sđ \(\overparen{{A_1}{A_3}}\) + sđ \(\overparen{{A_8}{A_16}}\) (góc có đỉnh ở trong đường tròn (O))

\( \Rightarrow \) \(\widehat {{A_1}I{A_3}} = {{36^\circ  + 144^\circ } \over 2} = 90^\circ \)

\( \Rightarrow \) A1A8⊥ AA16

Sachbaitap.com

 

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan