3. Trang 6 Sách bài tập Hình Học 11 nâng cao.
Cho đường tròn (O) với đường kính AB cố định một đường kính MN thay đổi. Các đường thẳng AM và An cắt tiếp tuyến tại B lần lượt tại P và Q. Tìm quỹ tích trực tâm các tam giác MPQ và NPQ.
Giải
Tam giác MPQ có QA là một đường cao ( vì \(QA \bot MP\) ). Bởi vậy nếu ta kẻ \(MM' \bot PQ\) thì MM’ cắt QA tại trực tâm H của tam giác MPQ, đoạn thẳng OA là đường trung bình của tam giác NMH nên:
\(\overrightarrow {MH} = 2\overrightarrow {OA} = \overrightarrow {BA} \)
Vậy phép tịnh tiến T theo vecto \(\overrightarrow {BA} \) biến M thành H. Chú ý rằng M không trùng với A hoặc B, ta suy ra quỹ H là ảnh của đường tròn (O) (không kể hai điểm A và B) qua phép tịnh tiến đó.
Làm tương tự đối với trực tâm H’ của tam giác NPQ.
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục