3. Trang 6 Sách bài tập Hình Học 11 nâng cao.
Cho đường tròn (O) với đường kính AB cố định một đường kính MN thay đổi. Các đường thẳng AM và An cắt tiếp tuyến tại B lần lượt tại P và Q. Tìm quỹ tích trực tâm các tam giác MPQ và NPQ.
Giải
Tam giác MPQ có QA là một đường cao ( vì \(QA \bot MP\) ). Bởi vậy nếu ta kẻ \(MM' \bot PQ\) thì MM’ cắt QA tại trực tâm H của tam giác MPQ, đoạn thẳng OA là đường trung bình của tam giác NMH nên:
\(\overrightarrow {MH} = 2\overrightarrow {OA} = \overrightarrow {BA} \)
Vậy phép tịnh tiến T theo vecto \(\overrightarrow {BA} \) biến M thành H. Chú ý rằng M không trùng với A hoặc B, ta suy ra quỹ H là ảnh của đường tròn (O) (không kể hai điểm A và B) qua phép tịnh tiến đó.
Làm tương tự đối với trực tâm H’ của tam giác NPQ.
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục