Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 31 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.8 trên 14 phiếu

Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng) rồi rút gọn biểu thức :

Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng) rồi rút gọn biểu thức :

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)

Giải:

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)\( = {{\left( {x - 2} \right)\left( {{x^2} - 2x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 5x + 6} \right)}} = {{\left( {x - 2} \right)\left( {{x^2} - 3x + x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 2x - 3x + 6} \right)}}\)

\( = {{\left( {x - 2} \right)\left[ {x\left( {x - 3} \right) + \left( {x - 3} \right)} \right]} \over {\left( {x + 1} \right)\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right]}} = {{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = 1\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)\( = {{\left( {x + 1} \right)\left( {4 - x} \right)} \over {\left( {{x^2} - 2x - 8} \right)x\left( {x + 1} \right)}} = {{4 - x} \over {\left( {{x^2} - 4x + 2x - 8} \right)x}}\)

\( = {{4 - x} \over {\left[ {x\left( {x - 4} \right) + 2\left( {x - 4} \right)} \right]x}} = {{4 - x} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {{x - 4} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {1 \over {x\left( {x + 2} \right)}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)\(={{\left( {x + 2} \right)\left( {x + 6} \right)\left( {x - 6} \right)} \over {4\left( {x + 6} \right)\left( {{x^2} + x - 2} \right)}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {{x^2} + 2x - x - 2} \right)}}\)

\( = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left[ {x\left( {x + 2} \right) - \left( {x + 2} \right)} \right]}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {x + 2} \right)\left( {x - 1} \right)}} = {{x - 6} \over {4\left( {x - 1} \right)}}\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan