Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.22 trang 61 SBT Đại số 10 Nâng cao

Bình chọn:
2.8 trên 5 phiếu

Giải bài tập Câu 3.22 trang 61 SBT Đại số 10 Nâng cao

Tìm tất cả các giá trị dương của k để các nghiệm của phương trình

\(2{x^2} - \left( {k + 2} \right)x + 7 = {k^2}\)

Trái dấu nhau và có giá trị tuyệt đối là nghịch đảo của nhau.

Giải:

k = 3.

Gợi ý. Gọi \({x_1},{x_2}\) là nghiệm của phương trình.

Áp dụng định lí Vi-ét và theo yêu cầu bài toán ta có \({x_2} =  - \dfrac{1}{{{x_1}}}\) và

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = {x_1} - \dfrac{1}{{{x_1}}} = \dfrac{{k + 2}}{2}}\\{{x_1}{x_2} = {x_1}\left( {\dfrac{{ - 1}}{{{x_1}}}} \right) =  - 1 = \dfrac{{7 - {k^2}}}{2}.}\end{array}} \right.\)

Từ \(\dfrac{{7 - {k^2}}}{2} =  - 1\) ta có \({k^2} = 9,\) do k > 0 nên k = 3.

Với k = 3 nghiệm của phương trình là \({x_1} = \dfrac{{5 - \sqrt {41} }}{4},{x_2} = \dfrac{{5 + \sqrt {41} }}{4}\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan