Cho cấp số cộng \(({u_n})\) có công sai \(d > 0,{u_{31}} + {u_{34}} = 11\) và \({\left( {{u_{31}}} \right)^2} + {\left( {{u_{34}}} \right)^2} = 101\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
Giải
Ta có
\(\eqalign{
& 101 = {\left( {{u_{31}}} \right)^2} + {\left( {{u_{34}}} \right)^2} \cr&\;\;\;\;\;= {1 \over 2}\left[ {{{\left( {{u_{31}} - {u_{34}}} \right)}^2} + {{\left( {{u_{31}} + {u_{34}}} \right)}^2}} \right] \cr&\;\;\;\;\;= {1 \over 2}\left[ {{{11}^2} + {{\left( {{u_{31}} - {u_{34}}} \right)}^2}} \right] \cr
& \Rightarrow {\left( {{u_{31}} - {u_{34}}} \right)^2} = 2 \times 101 - 121 = 81 = {9^2}\,\,\,\,\,\,(1) \cr} \)
Vì \(d > 0\) nên \({u_{31}} < {u_{34}}.\) Do đó, từ (1) ta được \({u_{31}} - {u_{34}} = - 9,\) hay
\( - 9 = {u_{31}} - {u_{34}} = ({u_1} + 30d) - ({u_1} + 33d) = - 3d \)
\(\Rightarrow d = 3\)
Vì thế
\(\eqalign{
& 11 = {u_{31}} + {u_{34}} = \left( {{u_1} + 30d} \right) + \left( {{u_1} + 33d} \right) \cr&\;\;\;\;\;= 2{u_1} + 63d = 2{u_1} + 63 \times 3 = 2{u_1} + 189 \cr
& \Rightarrow {u_1} = - 89. \cr} \)
Từ đó suy ra số hạng tổng quát của cấp số cộng đã cho là :
\({u_n} = - 89 + (n - 1).3\) hay \({u_n} = 3n - 92\)
sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục