Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.
Giải:
Gọi E là trung điểm của DC
Trong ∆ BDC ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ ME // BD( tính chất đường trung bình của tam giác)
Suy ra: DI // ME
\(AD = {1 \over 2}DC\) (gt)
\(DE = {1 \over 2}DC\) (theo cách vẽ)
⇒AD = DE
DI // ME
Nên AI = IM (tính chất đường trung bình của tam giác)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục