Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 34 trang 84 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.8 trên 44 phiếu

Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.

Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.

Giải:

                                                       

Gọi E là trung điểm của DC

Trong ∆ BDC ta có:

 M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆ BCD

⇒ ME // BD( tính chất đường trung bình của tam giác)

Suy ra: DI // ME

\(AD = {1 \over 2}DC\)  (gt)

\(DE = {1 \over 2}DC\) (theo cách vẽ)

⇒AD = DE

DI // ME

Nên AI = IM (tính chất đường trung bình của tam giác)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan