Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK.
Giải:
Trong tam giác ABC ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của tam giác ABC
⇒ED // BC và \(ED = {{BC} \over 2}\) (tính chất đường trung bình của tam giác) (1)
Trong tam giác GBC ta có:
I là trung điểm của BG (gt)
K là trung điểm của CG (gt)
Nên IK là đường trung bình của ∆ GBC
⇒ IK // BC và \(IK = {{BC} \over 2}\) (tính chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: IK // DE và IK = DE.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục