Phân tích thành nhân tử
a. \({x^2} + 4x + 3\)
b. \(2{x^2} + 3x - 5\)
c. \(16x - 5{x^2} - 3\)
Giải:
a. \({x^2} + 4x + 3\) \( = {x^2} + x + 3x + 3 = \left( {{x^2} + x} \right) + \left( {3x + 3} \right)\)
\(=x\left( {x + 1} \right) + 3\left( {x + 1} \right) = \left( {x + 1} \right)\left( {x + 3} \right)\)
b. \(2{x^2} + 3x – 5\) \( = 2{x^2} - 2x + 5x - 5 = \left( {2{x^2} - 2x} \right) + \left( {5x - 5} \right)\)
\( = 2x\left( {x - 1} \right) + 5\left( {x - 1} \right) = \left( {x - 1} \right)\left( {2x + 5} \right)\)
c. \(16x - 5{x^2} – 3\) \( = 15x - 5{x^2} - 3 + x = \left( {15x - 5{x^2}} \right) - \left( {3 - x} \right)\)
\( = 5x\left( {3 - x} \right) - \left( {3 - x} \right) = \left( {3 - x} \right)\left( {5x - 1} \right)\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục