Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.60 trang 68 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 3.60 trang 68 SBT Đại số 10 Nâng cao.

Giải và biện  luận các phương trình theo tham số m :

a. \(\left| {2x + m} \right| = \left| {2x + 2m - 1} \right|\)

b. \(\left| {mx + 1} \right| = \left| {2x - m - 3} \right|\)

c. \(\left( {mx - 2} \right)\left( {2x + 4} \right) = 0\)

Giải:

a. Để giải phương trình \(\left| {2x + m} \right| = \left| {2x + 2m - 1} \right|,\) ta giải hai phương trình sau :

\(\begin{array}{l}2x + m = 2{\rm{x}} + 2m - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\2x + m =  - \left( {2x + 2m - 1} \right).\,\,\,\,\,\,\,\,\,\,(2)\end{array}\)

• \((1) ⇔ 0x = m – 1\)

Phương trình này vô nghiệm nếu m ≠ 1 và nghiệm đúng với mọi x nếu m = 1.

• \((2) ⇔ 4{\rm{x}} =  - 3m + 1 \Leftrightarrow {\rm{x}} = \dfrac{{ - 3m + 1}}{4}\)

Kết luận

- Nếu m ≠ 1 thì phương trình đã cho có một nghiệm \(x = \dfrac{{ - 3m + 1}}{4}\)

- Nếu m = 1 thì phương trình đã cho nghiệm đúng với mọi x.

Chú ý. Cũng có thể giải phương trình này bằng cách bình phương hai vế :

\(\begin{array}{l}\left| {2x + m} \right| = \left| {2{\rm{x}} + 2m - 1} \right|\\ \Leftrightarrow {\left( {2x + m} \right)^2} = {\left( {2{\rm{x}} + 2m - 1} \right)^2}\\ \Leftrightarrow 4\left( {1 - m} \right)x = \left( {m - 1} \right)\left( {3m - 1} \right)\end{array}\)

b. Việc giải phương trình \(\left| {m{\rm{x}} + 1} \right| = \left| {2{\rm{x}} - m - 3} \right|\) quy về giải hai phương trình \(\left( {m - 2} \right)x =  - \left( {m + 4} \right)\,va\,\left( {m + 2} \right)x = m + 2\)

Kết luận

- Nếu \(m \ne  \pm 2\) thì phương trình có hai nghiệm \(x = \dfrac{{m + 4}}{{2 - m}}\) và \(x = 1\)

- Nếu m = -2 thì phương trình có nghiệm đúng với mọi x.

- Nếu m = 2 thì phương trình có một nghiệm x = 1.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan