Câu 41 trang 11,12 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.5 trên 34 phiếu

Rút gọn các biểu thức

Rút gọn các biểu thức:

a) \(\sqrt {{{x - 2\sqrt x  + 1} \over {x + 2\sqrt x  + 1}}} \) (x ≥ 0);

b) \({{x - 1} \over {\sqrt y  - 1}}\sqrt {{{{{(y - 2\sqrt y  + 1)}^2}} \over {{{(x - 1)}^4}}}} \) (x ≠1, y ≠ 1 và y ≥ 0).

Gợi ý làm bài

a) Vì x ≥ 0 nên \(x = {\left( {\sqrt x } \right)^2}\)

Ta có:

\(\eqalign{
& \sqrt {{{x - 2\sqrt x + 1} \over {x + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x } \right)}^2} - 2\sqrt x + 1} \over {{{\left( {\sqrt x } \right)}^2} + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x - 1} \right)}^2}} \over {{{\left( {\sqrt x + 1} \right)}^2}}}} \cr} \)

\( = {{\sqrt {{{\left( {\sqrt x  - 1} \right)}^2}} } \over {\sqrt {{{\left( {\sqrt x  + 1} \right)}^2}} }} = {{\left| {\sqrt x  - 1} \right|} \over {\left| {\sqrt x  + 1} \right|}} = {{\left| {\sqrt x  - 1} \right|} \over {\sqrt x  + 1}}\)

- Nếu \(\sqrt x  - 1 \ge 0 \Leftrightarrow x \ge 1\)  thì \(\left| {\sqrt x  - 1} \right| = \sqrt x  - 1\)

Ta có: \({{\left| {\sqrt x  - 1} \right|} \over {\sqrt x  + 1}} = {{\sqrt x  - 1} \over {\sqrt x  + 1}}\) (với x ≥ 1)

- Nếu \(\sqrt x  - 1 < 0 \Leftrightarrow x < 1\) thì \(\left| {\sqrt x  - 1} \right| = 1 - \sqrt x \)

Ta có: \({{\left| {\sqrt x  - 1} \right|} \over {\sqrt x  + 1}} = {{1 - \sqrt x } \over {\sqrt x  + 1}}\) (với 0 ≤ x < 1)

b) Vì y ≥ 0 nên \(y = {\left( {\sqrt y } \right)^2}\)

Ta có: 

\(\eqalign{
& {{x - 1} \over {\sqrt y - 1}}\sqrt {{{{{ {y - 2\sqrt y + 1} }}} \over {{{(x - 1)}^4}}}} \cr
& = {{x - 1} \over {\sqrt y - 1}}{{\sqrt {{{\left( \sqrt y - 1 \right)}^2}} } \over {\sqrt {{{(x - 1)}^4}} }} \cr} \)

\(\eqalign{
& = {{x - 1} \over {\sqrt y - 1}}.{{\left| \sqrt y-1 \right|} \over {{{(x - 1)}^2}}}  \cr} \)

+ Nếu y>1 thì ta có \(\left| \sqrt y-1 \right|=\sqrt y-1\) nên kết quả là \({{x - 1} \over {\sqrt y - 1}}.{{ \sqrt y-1 } \over {{{(x - 1)}^2}}} =\dfrac {1}{x-1}\)

+ Nếu y<1 thì ta có \(\left| \sqrt y-1 \right|=-(\sqrt y-1)\) nên kết quả là \({{x - 1} \over {\sqrt y - 1}}.{{ -(\sqrt y-1) } \over {{{(x - 1)}^2}}} =-\dfrac {1}{x-1}\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan