Tìm x thỏa mãn điều kiện
a) \(\sqrt {{{2x - 3} \over {x - 1}}} = 2\)
b) \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)
c) \(\sqrt {{{4x + 3} \over {x + 1}}} = 3\)
d) \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)
Gợi ý làm bài
a) Ta có:
\(\sqrt {{{2x - 3} \over {x - 1}}} \) xác định khi và chỉ khi \({{2x - 3} \over {x - 1}} \ge 0\)
Trường hợp 1:
\(\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr
x > 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)
Trường hợp 2:
\(\eqalign{
& \left\{ \matrix{
2x - 3 \le 0 \hfill \cr
x - 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \le 3 \hfill \cr
x < 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \le 1,5 \hfill \cr
x < 1 \hfill \cr} \right. \Leftrightarrow x < 1 \cr} \)
Với x ≥ 1,5 hoặc x < 1 ta có:
\(\eqalign{
& \sqrt {{{2x - 3} \over {x - 1}}} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr
& \Leftrightarrow 2x - 3 = 4(x - 1) \cr} \)
\(\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)
Giá trị x = 0,5 thỏa mãn điều kiện x < 1.
b) Ta có: \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }}\) xác định khi và chỉ khi:
\(\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr
x > 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)
Với x ≥ 1,5 ta có:
\(\eqalign{
& {{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr
& \Leftrightarrow 2x - 3 = 4(x - 1) \cr} \)
\(\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)
Giá trị x = 0,5 không thỏa mãn điều kiện.
Vậy không có giá trị nào của x để \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)
c) Ta có: \(\sqrt {{{4x + 3} \over {x + 1}}} \) xác định khi và chỉ khi \({{4x + 3} \over {x + 1}} \ge 0\)
Trường hợp 1:
\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr
x > - 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)
Trường hợp 2:
\(\eqalign{
& \left\{ \matrix{
4x + 3 \le 0 \hfill \cr
x + 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \le - 3 \hfill \cr
x < - 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr} \)
Với x ≥ -0,75 hoặc x < -1 ta có:
\(\eqalign{
& \sqrt {{{4x + 3} \over {x + 1}}} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)
\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)
Giá trị x = -1,2 thỏa mãn điều kiện x < -1.
d) Ta có : \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:
\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr
x > - 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)
Với x ≥ -0,75 ta có:
\(\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)
\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)
Vậy không có giá trị nào của x để \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)
Sachbaitap.net
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục