Trong phòng học có một số ghế dài. Nếu xếp mỗi ghế ba học sinh thì sáu học sinh không có chỗ. Nếu xếp mỗi ghế bốn học sinh thì thừa một ghế. Hỏi lớp có bao nhiêu ghế và bao nhiêu học sinh?
Giải
Gọi số ghế trong phòng học là x (ghế)
Số học sinh của lớp là y (học sinh)
Điều kiện: x ∈ N*; y ∈ N*
Nếu mỗi ghế 3 em thì có 6 em không có chỗ, ta có phương trình:
3x + 6 = y
Nếu mỗi ghế 4 học sinh thì thừa 1 ghế, ta có phương trình:
( x – 1 )4 = y
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3x + 6 = y} \cr
{\left( {x - 1} \right).4 = y} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{3x - y = - 6} \cr
{4x - y = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 10} \cr
{4x - y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 10} \cr
{y = 36} \cr} } \right. \cr} \)
x = 10 và y = 36 thỏa mãn điều kiện bài toán.
Vậy phòng học có 10 ghế và lớp có 36 học sinh.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục