a) \(\mathop {\lim }\limits_{x \to {1^ + }} {{{x^2} + 1} \over {x - 1}}\) b) \(\mathop {\lim }\limits_{x \to {1^ - }} {{{x^2} + 1} \over {x - 1}}\)
c) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\left| {3x + 6} \right|} \over {x + 2}}\) d) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} {{\left| {3x + 6} \right|} \over {x + 2}}\) .
Giải
a)
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} \right) = 2 > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ + }} {{{x^2} + 1} \over {x - 1}} = + \infty \cr} \)
b)
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 1} \right) = 2 > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 1} \right) < 0 \cr
& \mathop {\lim }\limits_{x \to {1^ - }} {{{x^2} + 1} \over {x - 1}} = - \infty \cr} \)
c) Với \(x > - 2,\) ta có \(3x + 6 = 3\left( {x + 2} \right) > 0.\) Do đó
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\left| {3x + 6} \right|} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{3x + 6} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} 3 = 3;\)
d) Với \(x < - 2,\) ta có \(3x + 6 = 3\left( {x + 2} \right) < 0.\) Do đó
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} {{\left| {3x + 6} \right|} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} -{{3x + 6} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }}(- 3) =- 3\)
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục