Tìm các giới hạn sau
a) \(\mathop {\lim }\limits_{x \to - 1} {{2x + 1} \over {{x^2} - 3x + 4}}\) b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^3} + 2x + 3} \over {{x^2} + 5}}} \)
c) \(\mathop {\lim }\limits_{x \to - 2} {{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}}\) d) \(\mathop {\lim }\limits_{x \to - 3} \left| {{{9 - {x^2}} \over {2{x^2} + 7x + 3}}} \right|.\)
Giải
a) \( - {1 \over 8};\) b) \({{\sqrt {15} } \over 3};\)
c) \({{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}} = {{\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right)} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = {{{x^2} - 3x + 5} \over {x + 1}}\) với mọi \(x \ne -2.\) Do đó
\(\mathop {\lim }\limits_{x \to - 2} {{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}} = \mathop {\lim }\limits_{x \to - 2} {{{x^2} - 3x + 5} \over {x + 1}} = - 15;\)
d)
\(\eqalign{
& {{9 - {x^2}} \over {2{x^2} + 7x + 3}} = {{\left( {3 - x} \right)\left( {3 + x} \right)} \over {\left( {2x + 1} \right)\left( {x + 3} \right)}} = {{3 - x} \over {2x + 1}} \cr
& \mathop {\lim }\limits_{x \to - 3} \left| {{{9 - {x^2}} \over {2{x^2} + 7x + 3}}} \right| = \mathop {\lim }\limits_{x \to - 3} \left| {{{3 - x} \over {2x + 1}}} \right| \cr&= \left| {{{3 - \left( { - 3} \right)} \over {2.\left( { - 3} \right) + 1}}} \right| = {6 \over 5} \cr} \)
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục