Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.71 trang 114 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 4.71 trang 114 SBT Đại số 10 Nâng cao

Giải các phương trình :

a. \(9{ {x}} + \sqrt {3{ {x}} - 2}  = 10\)

b. \(\sqrt { - {x^2} + 2{ {x}} + 4}  = x - 2\)

c. \(\sqrt {{{ {x}}^2} - 2{ {x}} - 3}  = 2{ {x}} + 3\)

d. \(\sqrt {9 - 5{ {x}}}  = \sqrt {3 - x}  + \dfrac{6}{{\sqrt {3 - x} }}\)

Giải:

a. Phương trình được biến đổi thành

\(3\left( {3{ {x}} - 2} \right) + \sqrt {3{ {x}} - 2}  - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\)

Đặt \(t = \sqrt {3{ {x}} - 2}  \ge 0,\) khi đó (*) trở thành \(3{t^2} + t - 4 = 0\) Giải ra có hai nghiệm \({t_1} = 1,{t_2} =  - \dfrac{4}{3}.\)

Do \(t ≥ 0,\) nên chỉ lấy \(t = 1.\) Vậy (*) \( \Leftrightarrow \sqrt {3{ {x}} - 2}  = 1 \Leftrightarrow { {x}} = 1.\) Phương trình đã cho có nghiệm duy nhất \(x = 1.\)

b. \(x = 3\).

Hướng dẫn. Phương trình tương đương với hệ:

\(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} + 2{ {x}} + 4 = {{\left( {{ {x}} - 2} \right)}^2}}\\{x - 2 \ge 0}\end{array}} \right.\)

c. \(x = \dfrac{{ - 7 + \sqrt {13} }}{3}.\) Hướng dẫn. Phương trình đã cho tương đương với hệ

\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 2{ {x}} - 3 = {{\left( {2{ {x}} + 3} \right)}^2}}\\{2{ {x}} + 3 \ge 0}\end{array}} \right.\)

d. \(x = -3\).

Hướng dẫn. Phương trình tương đương với

\(\left\{ {\begin{array}{*{20}{c}}{\sqrt {\left( {9 - 5{ {x}}} \right)\left( {3 - x} \right)}  = 9 - x}\\{x \le \dfrac{9}{5}.}\end{array}} \right.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan