Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.97 trang 118 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 4.97 trang 118 SBT Đại số 10 Nâng cao

Tùy theo giá trị của tham số m, hãy biện luận số nghiệm phương trình

\(\left( {m + 3} \right){x^4} - \left( {2m - 1} \right){x^2} - 3 = 0\)

Giải:

Đặt \(t = {x^2}\) phương trình trở thành \(f\left( t \right) = \left( {m + 3} \right){t^2} - \left( {2m - 1} \right)t - 3 = 0,t \ge 0.\)

● Nếu m + 3 = 0, tức là m = -3 thì \(f\left( t \right) = 7t - 3 = 0,\) từ đó \(t = \dfrac{3}{7}.\) Suy ra phương trình đã cho có hai nghiệm \(x =  \pm \sqrt {\dfrac{3}{7}} .\)

● Nếu \(m + 3 ≠ 0 ⇔ m ≠ -3.\)

Khi đó, \(\Delta  = {\left( {2m - 1} \right)^2} + 12\left( {m + 3} \right) = 4{m^2} + 8m + 37 > 0\) với mọi m nên phương trình f(t) = 0 luôn có hai nghiệm phân biệt khác 0 (vì \(c = -3 ≠ 0\)).

+) Phương trình \(f(t) = 0\) có hai nghiệm dương khi và chỉ khi :

\(\left\{ {\begin{array}{*{20}{c}}{S = \dfrac{{2m - 1}}{{m + 3}} > 0}\\{P = \dfrac{{ - 3}}{{m + 3}} > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 1 < 0}\\{m + 3 < 0}\end{array}} \right. \Leftrightarrow m <  - 3.\)

Khi đó phương trình đã cho có bốn nghiệm phân biệt.

+) Phương trình \(f(t) = 0\) có hai nghiệm âm khi và chỉ khi:

\(\left\{ {\begin{array}{*{20}{c}}{S = \dfrac{{2m - 1}}{{m + 3}} < 0}\\{P = \dfrac{{ - 3}}{{m + 3}} > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 1 > 0}\\{m + 3 < 0}\end{array}} \right.\)

\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > \dfrac{1}{2}}\\{m <  - 3}\end{array}} \right.\) (không tồn tại m).

+) Phương trình \(f(t) = 0\) có một nghiệm âm và một nghiệm dương khi và chỉ khi

\(ac = (-3)(m + 3) < 0 ⇔ m > -3.\)

Khi đó phương trình đã cho có hai nghiệm phân biệt.

Tóm lại : Với \(m ≥ -3\) phương trình có hai nghiệm phân biệt.

Với \(m < -3\) phương trình có bốn nghiệm phân biệt.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan