Giải các bất phương trình:
a. \({{3x - 1} \over 4} > 2\)
b. \({{2x + 4} \over 3} < 3\)
c. \({{1 - 2x} \over 3} > 4\)
d. \({{6 - 4x} \over 5} < 1\)
Giải:
a. Ta có:
\(\eqalign{ & {{3x - 1} \over 4} > 2\cr&\Leftrightarrow {{3x - 1} \over 4}.4 > 2.4 \Leftrightarrow 3x - 1 > 8 \cr & \Leftrightarrow 3x > 8 + 1 \Leftrightarrow 3x > 9 \Leftrightarrow x > 3 \cr} \)
Vậy tập nghiệm của bất phương trình là: \({\rm{\{ }}x|\,\,x > 3\} \)
b. Ta có:
\(\eqalign{ & {{2x + 4} \over 3} < 3\cr& \Leftrightarrow {{2x + 4} \over 3}.3 < 3.3 \Leftrightarrow 2x + 4 < 9 \cr & \Leftrightarrow 2x < 9 - 4 \Leftrightarrow 2x < 5 \Leftrightarrow x < 2,5 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x < 2,5} \right\}\)
c. Ta có:
\(\eqalign{ & {{1 - 2x} \over 3} > 4 \cr&\Leftrightarrow {{1 - 2x} \over 3}.3 > 4.3 \Leftrightarrow 1 - 2x > 12 \cr & \Leftrightarrow - 2x > 12 - 1 \Leftrightarrow - 2x > 11 \cr&\Leftrightarrow x < - 5,5 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x < - 5,5} \right\}\)
d. Ta có:
\(\eqalign{ & {{6 - 4x} \over 5} < 1\cr& \Leftrightarrow {{6 - 4x} \over 5}.5 < 1.5 \Leftrightarrow 6 - 4x < 5 \cr & \Leftrightarrow - 4x < 5 - 6 \Leftrightarrow - 4x < - 1\cr& \Leftrightarrow x > {1 \over 4} \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > {1 \over 4}} \right\}\)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục