Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình 145.
(xem hình 145)
Giải:
Hình vẽ đã cho là hình chóp có ba mặt xung quanh và mặt đáy là các tam giác đều bằng nhau có cạnh là a. Áp dụng định lí Pi-ta-go vào tam giác vuông CIA, ta có:
Suy ra: \(C{I^2} = A{C^2} - A{I^2} = {a^2} - {\left( {{a \over 2}} \right)^2} = {{3{a^2}} \over 4}\)
Vậy CI = \({{a\sqrt 3 } \over 2}\)
Ta có: \({S_{ABC}} = {1 \over 2}.a.{{a\sqrt 3 } \over 2} = {{{a^2}\sqrt 3 } \over 4}\) (đvdt)
Vậy diện tích toàn phần của hình chóp tam giác đều là: \({S_{TP}} = 4.{{{a^2}\sqrt 3 } \over 4} = {a^2}\sqrt 3 \) (đvdt)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục