Hình chóp đều S.ABC có cạnh đáy a = 12cm, chiều cao h = 8cm. Hãy tính diện tích xung quanh của hình chóp đó.
Giải:
(hình trang 155 sgbt)
Kẻ AO kéo dài cắt BC tại I.
Ta có: AI ⊥ BC (tính chất tam giác đều)
BI = IC = \({1 \over 2}BC=6\)
Áp dụng định lí Pi-ta-go vào tam giác vuông AIB, ta có: \(A{B^2} = B{I^2} + A{I^2}\)
Suy ra:
\(\eqalign{ & A{I^2} = A{B^2} - B{I^2} = {12^2} - {6^2} = 108 \cr & AI = \sqrt {108} (cm) \cr} \)
Vì tam giác ABC đều nên O là trọng tâm của tam giác ABC.
Ta có: \(OI = {1 \over 3}AI = {1 \over 3}\sqrt {108} \) (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông SOI, ta có:
\(\eqalign{ & S{I^2} = S{O^2} + O{I^2} = {8^2} + {1 \over 9}.108 = 76 \cr & SI = \sqrt {76} (cm) \cr} \)
Vậy \({S_{xq}} = pd = \left[ {\left( {12.3} \right):2} \right].\sqrt {76} = 18\sqrt {76} (c{m^2})\)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục