Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6. Trang 103 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.6 trên 38 phiếu

Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và các đoạn thẳng và nó chia ra trên cạnh huyền.

Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và các đoạn thẳng và nó chia ra trên cạnh huyền.

Gợi ý làm bài:

Giả sử tam giác ABC có: \(\widehat {BAC} = 90^\circ \)

\(AB = 5,AC = 7\) 

Theo định lý Pi-ta-go, ta có:

\(B{C^2} = A{B^2} + A{C^2}\)

\(\eqalign{
& \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} \cr
& = \sqrt {{5^2} + {7^2}} = \sqrt {74} \cr} \) 

Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:

\(\eqalign{
& AH.BC = AB.AC \cr
& \Rightarrow AH = {{AB.AC} \over {BC}} \cr
& = {{5.7} \over {\sqrt {74} }} = {{35} \over {\sqrt {74} }} \cr} \) 

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó, ta có:

\(\eqalign{
& A{B^2} = BH.BC \cr
& \Rightarrow BH = {{A{B^2}} \over {BC}} \cr
& = {{{5^2}} \over {\sqrt {74} }} = {{25} \over {\sqrt {74} }} \cr} \)

\(\eqalign{
& CH = BC - BH \cr
& = \sqrt {74} - {{25} \over {\sqrt {74} }} = {{74 - 25} \over {\sqrt {74} }} = {{49} \over {\sqrt {74} }} \cr} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan