Cho một tam giác vuông. Biết tỷ số hai cạnh góc vuông là 3 : 4 và cạnh huyền là 125cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.
Gợi ý làm bài:
Giả sử tam giác ABC có \(\widehat {BAC} = {90^0 },AH \bot BC,BC = 125cm,{{AB} \over {AC}} = {3 \over 4}\)
Từ \({{AB} \over {AC}} = {3 \over 4}\) suy ra: \({{AB} \over 3} = {{AC} \over 4} \Rightarrow {{A{B^2}} \over 9} = {{A{C^2}} \over {16}}\)
Theo tính chất dãy tỉ số bằng nhau,ta có:
\({{A{B^2}} \over 9} = {{A{C^2}} \over {16}} = {{A{B^2} + A{C^2}} \over {9 + 16}} = {{A{B^2} + A{C^2}} \over {25}}\) (1)
Theo định lí Pi-ta-go, ta có:
\(\eqalign{
& B{C^2} = A{B^2} + A{C^2} \cr
& \Rightarrow A{B^2} + A{C^2} = {125^2} = 15625 \cr} \) (2)
Từ (1) và (2) suy ra: \({{A{B^2}} \over 9} = {{A{C^2}} \over {16}} = {{15625} \over {25}} = 625\) (3)
Từ (3) suy ra :
\(A{B^2} = 9.625 = 5625 \Rightarrow AB = \sqrt {5625} = 75(cm)\)
\(A{C^2} = 16.625 = 10000 \Rightarrow AC = \sqrt {10000} = 100(cm)\)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
\(A{B^2} = BH.BC \Rightarrow BH = {{A{B^2}} \over {BC}} = {{{{75}^2}} \over {125}} = 45(cm)\)
\(CH = BC - BH = 125 - 45 = 80(cm)\)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục