a. Vẽ hình và tính số đường chéo của ngũ giác, lục giác
b. Chứng minh rằng hình n – giác có tất cả \(({{n\left( {n - 3} \right)} \over 2}\) đường chéo.
Giải:
a. Từ mỗi đỉnh của ngũ giác vẽ được hai đường chéo. Ngũ giác có 5 đỉnh ta kẻ được 5.2 = 10 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy ngũ giác có tất cả 5 đường chéo.
Từ mối đỉnh của lục giác vẽ được 3 đường chéo. Lục giác có 6 đỉnh ta kẻ được 6.3 = 18 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy lục giác có tất cả là 9 đường chéo.
b. Từ mỗi đỉnh của n – giác nối với các đỉnh còn lại ta được n – 1 đoạn thẳng , trong đó có hai đoạn thẳng là cạnh của hình n – giác (hai đoạn thẳng nối với hai đỉnh kề nhau). Vậy qua mỗi đỉnh của n – giác vẽ được n – 3 đường chéo. Hình n – giác có n đỉnh kẻ được n(n – 3 ) đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy hình n – giác có tất cả \({{n\left( {n - 3} \right)} \over 2}\) đường chéo.
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục