Dùng tính chất cơ bản của phân thức để biến đổi mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng tử thức :
a. \(\dfrac{3}{{x + 2}}\) và \(\dfrac{{x - 1}}{{5x}}\)
b. \(\dfrac{{x + 5}}{{4x}}\) và \(\dfrac{{{x^2} - 25}}{{2x + 3}}\)
Giải:
a.
\(\eqalign{
& {3 \over {x + 2}} = {{3\left( {x - 1} \right)} \over {\left( {x + 2} \right)\left( {x - 1} \right)}} = {{3x - 3} \over {{x^2} + x - 2}} \cr
& {{x - 1} \over {5x}} = {{3\left( {x - 1} \right)} \over {5x.3}} = {{3x - 3} \over {15x}} \cr} \)
b. \(\dfrac{{x + 5}}{{4x}} = \dfrac{{\left( {x + 5} \right)\left( {x - 5} \right)}}{{4x\left( {x - 5} \right)}} = \dfrac{{{x^2} - 25}}{{4{x^2} - 20x}}\) và \(\dfrac{{{x^2} - 25}}{{2x + 3}}\)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục