61. Trang 15 Sách bài tập Hình Học 11 Nâng cao
Cho tam giác ABC vuông tại A và đường cao AD. Gọi c là phân giác của góc C, Đc là phép đối xứng qua c, V là phép vị tự tâm C tỉ số \(k = {{CA} \over {CB}}\) và F là hợp thành của Đc và V.
a) F biến tam giác ABC thành tam giác nào?
b) Lấy hai điểm M, N lần lượt nằm trên hai đoạn thẳng AB và DA sao cho:
\({{AM} \over {MB}} = {{DN} \over {NA}}\)
Chứng minh rằng c là phân giác của góc MCN.
Giải
a) Dễ thấy rằng \({{CA} \over {CB}} = {{CD} \over {CA}} = k\). bởi vậy F biến A thành D và biến B thành A. Do đó F biến tam giác ABC thành tam giác DAC.
b) Vì F biến đoạn thẳng AB thành DA nên biến M thành N. Bởi vậy, phép Đc biến CM thành CN, suy ra c là phân giác của góc MCN.
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục