63. Trang 15 Sách bài tập Hình Học 11 Nâng cao
Chứng minh rằng nếu hai tam giác có các đường cao tương ứng bằng nhau thì bằng nhau.
Giải
Giả sử tam giác ABC có đường cao AH, BI, CK và tam giác A'B'C' có các đường cao A'H', B'I', C'K' thỏa mãn AH = A'H', BI = B'I', CK = C'K'.
Trong tam giác ABC ta có AB.CK = BC.AH = CA.BI.
Cũng vậy, trong tam giác A'B'C' ta có A'B'.C'K'= B'C'.A'H' = C'A'.B'I'
Từ đó, suy ra \({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{CA} \over {C'A'}} = k\)
Như vậy, hai tam giác ABC và A'B'C' đồng dạng. Do đó, có phép đồng dạng F tỉ số k biến tam giác ABC thành tam giác A'B'C'. Nhưng F biến đường cao AH thành đường cao A'H' với A'H' = AH nên k = 1. Do đó F là phép dời hình. Vậy tam giác ABC thành tam giác A'B'C'.
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục