63. Trang 15 Sách bài tập Hình Học 11 Nâng cao
Chứng minh rằng nếu hai tam giác có các đường cao tương ứng bằng nhau thì bằng nhau.
Giải
Giả sử tam giác ABC có đường cao AH, BI, CK và tam giác A'B'C' có các đường cao A'H', B'I', C'K' thỏa mãn AH = A'H', BI = B'I', CK = C'K'.
Trong tam giác ABC ta có AB.CK = BC.AH = CA.BI.
Cũng vậy, trong tam giác A'B'C' ta có A'B'.C'K'= B'C'.A'H' = C'A'.B'I'
Từ đó, suy ra \({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{CA} \over {C'A'}} = k\)
Như vậy, hai tam giác ABC và A'B'C' đồng dạng. Do đó, có phép đồng dạng F tỉ số k biến tam giác ABC thành tam giác A'B'C'. Nhưng F biến đường cao AH thành đường cao A'H' với A'H' = AH nên k = 1. Do đó F là phép dời hình. Vậy tam giác ABC thành tam giác A'B'C'.
sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục