Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 63 trang 15 Sách bài tập Hình Học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Chứng minh rằng nếu hai tam giác có các đường cao tương ứng bằng nhau thì bằng nhau.

63. Trang 15 Sách bài tập Hình Học 11 Nâng cao

Chứng minh rằng nếu hai tam giác có các đường cao tương ứng bằng nhau thì bằng nhau.

Giải

Giả sử tam giác ABC có đường cao AH, BI, CK và tam giác A'B'C' có các đường cao A'H', B'I', C'K' thỏa mãn AH = A'H', BI = B'I', CK = C'K'.

Trong tam giác ABC ta có AB.CK = BC.AH = CA.BI.

Cũng vậy, trong tam giác A'B'C' ta có A'B'.C'K'= B'C'.A'H' = C'A'.B'I'

Từ đó, suy ra \({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{CA} \over {C'A'}} = k\)

Như vậy, hai tam giác ABC và A'B'C' đồng dạng. Do đó, có phép đồng dạng F tỉ số k biến tam giác ABC thành tam giác A'B'C'. Nhưng F biến đường cao AH thành đường cao A'H' với A'H' = AH nên k = 1. Do đó F là phép dời hình. Vậy tam giác ABC thành tam giác A'B'C'.

 

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan