Tìm các số tự nhiện n thỏa mãn mỗi bất phương trình sau:
a. \(3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0\)
b. \({\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40\)
Giải:
a. Ta có:
\(\eqalign{ & 3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0 \cr & \Leftrightarrow 15 - 12n + 27 + 2n > 0 \cr & \Leftrightarrow - 10n > - 42 \cr & \Leftrightarrow n < 4,2 \cr} \)
Vậy các số tự nhiên thỏa mãn bất phương trình là 0; 1; 2; 3; 4.
b. Ta có:
\(\eqalign{ & {\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40 \cr & \Leftrightarrow {n^2} + 4n + 4 - {n^2} + 9 \le 40 \cr & \Leftrightarrow 4n < 40 - 13 \cr & \Leftrightarrow n < {{27} \over 4} \cr} \)
Vậy các số tự nhiên thỏa mãn bất phương trình là 0; 1; 2; 3; 4; 5; 6.
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục