Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.40 trang 203 SBT Đại số 10 Nâng cao

Bình chọn:
3.8 trên 4 phiếu

Giải bài tập Câu 6.40 trang 203 SBT Đại số 10 Nâng cao

Chứng minh công thức \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\) (với \(0 < \alpha  < \dfrac{\pi }{2}\)) bằng “phương pháp hình học “ như sau:

Xét tam giác vuông ABC với \(\widehat A = \dfrac{\pi }{2},\widehat B = \alpha \). Bằng cách vẽ đường phân giác BD của góc B (h. 6.5), từ tính chất \(\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}}\), hãy suy ra rằng:

\(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}.\) Hãy tính \(\tan \dfrac{\pi }{{12}}\).

 

Giải:

Ta có

 \(\begin{array}{l}\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}} = \dfrac{{AC - AD}}{{BC}}\\ = \dfrac{{AC}}{{BC}} - \dfrac{{AD}}{{AB}}.\dfrac{{AB}}{{BC}}\end{array}\)

Từ đó \(\dfrac{{AD}}{{AB}}\left( {1 + \dfrac{{AB}}{{BC}}} \right) = \dfrac{{AC}}{{BC}},\) tức là \(\tan \dfrac{\alpha }{2}\left( {1 + \cos \alpha } \right) = \sin \alpha \), suy ra \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\).

Với \(\alpha  = \dfrac{\pi }{6}\) ta được \(\tan \dfrac{\pi }{{12}} = \dfrac{1}{{2\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}} = \dfrac{1}{{2 + \sqrt 3 }} = 2 - \sqrt 3 .\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan