Cho hàm số \(y = \left( {3 - \sqrt 2} \right)x + 1\).
a) Hàm số là đồng biến hay nghịch biến trên R ? vì sao?
b) Tính các giá trị tương ứng của y khi x nhận các giá trị sau:
0; 1; \(\sqrt 2 \); \(3 + \sqrt 2 \); \(3 - \sqrt 2 \).
c) Tính các giá trị tương ứng của x khi y nhận các giá trị sau:
0; 1; 8; \(2 + \sqrt 2 \); \(2 - \sqrt 2 \).
Gợi ý làm bài:
Hàm số \(y = \left( {3 - \sqrt 2 } \right)x + 1\) có hệ số \(a = 3 - \sqrt 2 \), hệ số \(b = 1\) .
a) Ta có: nên hàm số đồng biến trên R
b) Các giá trị của y được thể hiện trong bảng sau:
x |
0 |
1 |
\(\sqrt 2 \) | \(3 + \sqrt 2 \) | \(3 - \sqrt 2 \) |
\(y = \left( {3 - \sqrt 2 } \right)x + 1\) |
1 |
\(4 - \sqrt 2 \) | \(3\sqrt 2 - 1\) |
8 |
\(12 - 6\sqrt 2 \) |
c) Các giá trị tương ứng của x:
Với y = 0
\(\eqalign{
& y = 0 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 0 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = - 1 \cr
& \Leftrightarrow x = {{ - 1} \over {3 - \sqrt 2 }} \cr
& \Leftrightarrow x = {{ - 1\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& \Leftrightarrow x = {{ - \left( {3 + \sqrt 2 } \right)} \over 7} \cr} \)
Với y = 1
\(\eqalign{
& y = 1 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 1 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 0 \Leftrightarrow x = 0 \cr} \)
Với y = 8
\(\eqalign{
& y = 8 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 8 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 7 \cr
& \Leftrightarrow x = {7 \over {3 - \sqrt 2 }} \cr
& \Leftrightarrow x = {{7\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& \Leftrightarrow x = {{7\left( {3 + \sqrt 2 } \right)} \over 7} = 3 + \sqrt 2 \cr} \)
Với \(y = 2 + \sqrt 2 \)
\(\eqalign{
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 2 + \sqrt 2 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 1 + \sqrt 2 \cr
& \Leftrightarrow x = {{1 + \sqrt 2 } \over {3 - \sqrt 2 }} = {{\left( {1 + \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& = {{3 + \sqrt 2 + 3\sqrt 2 + 2} \over {9 - 2}} = {{5 + 4\sqrt 2 } \over 7} \cr} \)
Với \(y = 2 - \sqrt 2 \)
\(\eqalign{
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 2 - \sqrt 2 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 1 - \sqrt 2 \cr
& \Leftrightarrow x = {{1 - \sqrt 2 } \over {3 - \sqrt 2 }} = {{\left( {1 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& = {{3 + \sqrt 2 - 3\sqrt 2 - 2} \over {9 - 2}} = {{1 - 2\sqrt 2 } \over 7} \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục