Giải các bất phương trình:
a. \(3\left( {x - 2} \right)\left( {x + 2} \right) < 3{x^2} + x\)
b. \(\left( {x + 4} \right)\left( {5x - 1} \right) > 5{x^2} + 16x + 2\)
Giải:
a. Ta có:
\(\eqalign{ & 3\left( {x - 2} \right)\left( {x + 2} \right) < 3{x^2} + x \cr & \Leftrightarrow 3\left( {{x^2} - 4} \right) < 3{x^2} + x \cr & \Leftrightarrow 3{x^2} - 12 < 3{x^2} + x \cr & \Leftrightarrow 3{x^2} - 3{x^2} - x < 12 \cr & \Leftrightarrow - x <12 \Leftrightarrow x > - 12 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > - 12} \right\}\)
b. Ta có:
\(\eqalign{ & \left( {x + 4} \right)\left( {5x - 1} \right) > 5{x^2} + 16x + 2 \cr & \Leftrightarrow 5{x^2} - {x} + 20x - 4 > 5{x^2} + 16x + 2 \cr & \Leftrightarrow 5{x^2} - {x} + 20x - 5{x^2} - 16x > 2 + 4 \cr & \Leftrightarrow 3x > 6 \Leftrightarrow x > 2 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > 2} \right\}\)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục