Cho hình 32.
Biết:
\(AD \bot DC,\widehat {DAC} = 74^\circ \)
\(\widehat {AXB} = 123^\circ ,AD = 2,8\,cm\)
AX = 5,5cm, BX = 4,1cm.
a) Tính AC.
b) Gọi Y là điểm trên AX sao cho DY ⁄⁄ BX. Hãy tính XY
c) Tính diện tích tam giác BCX
Gợi ý làm bài
a) Trong tam giác vuông ACD, ta có:
\(AC = {{AD} \over {\cos \widehat {CAD}}} = {{2,8} \over {\cos 74^\circ }} \approx 10,158\,(cm)\)
b) Kẻ \(DN \bot AC\)
Trong tam giác vuông AND, ta có:
\(\eqalign{
& DN = AD.\sin \widehat {DAN} \cr
& = 2,8.\sin 74^\circ \approx 2,692\,(cm) \cr} \)
\(\eqalign{
& AN = AD.\cos \widehat {DAN} \cr
& = 2,8.\cos 74^\circ \approx 0,772\,(cm) \cr} \)
Vì BX // DY nên \(\widehat {D{\rm{YX}}} = \widehat {BXY} = 123^\circ \) ( hai góc so le trong)
Mà \(\widehat {DYN} + \widehat {D{\rm{YX}}} = 180^\circ \) (kề bù)
Suy ra:
\(\widehat {DYN} = 180^\circ - \widehat {D{\rm{YX}}} = 180^\circ - 123^\circ = 57^\circ \)
Trong tam giác vuông DYN, ta có:
\(\eqalign{
& NY = DN.\cot g\widehat {DYN} \cr
& \approx 2,692.\cot g57^\circ \approx 1,748\,(cm) \cr} \)
Ta có:
\(\eqalign{
& XY = AX - (AN + NY) \cr
& = 5,5 - (0,772 + 1,748) = 2,98\,(cm) \cr} \)
c) Ta có:
\(CX = AC - AX \approx 10,158 - 5,5 = 4,658\,(cm)\)
Kẻ \(BM \bot CX\)
Ta có:
\(\widehat {BXC} = 180^\circ - \widehat {BXA} = 180^\circ - 123^\circ = 57^\circ \)
Trong tam giác vuông BMX, ta có:
\(\eqalign{
& BM = BX.\sin \widehat {BXC} \cr
& = 4,1.\sin 57^\circ \approx 3,439\,(cm) \cr} \)
\(\eqalign{
& {S_{BCX}} = {1 \over 2}BM.CX \cr
& = {1 \over 2}.3,439.4,658 = 8,009\,\left( {c{m^2}} \right). \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục