Hãy biểu diễn y qua x ở mỗi phương trình (nếu có thể ) rồi đoán nhận số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao (không vẽ đồ thị):
\(a)\left\{ \matrix{
4x - {\rm{9y}} = 3 \hfill \cr
- 5x - 3y = 1 \hfill \cr} \right.\)
\(b)\left\{ \matrix{
{2,3x + 0,8y = 5} \cr
{2y = 6}\hfill \cr} \right.\)
\(c)\left\{ \matrix{
{3x = - 5} \cr
{x + 5y = - 4}\hfill \cr} \right.\)
\(d)\left\{ \matrix{
{3x - y = 1} \cr
{6x - 2y = 5} \hfill \cr} \right.\)
Giải
\(a)\left\{ \matrix{
4x - {\rm{9}}y = 3 \hfill \cr
- 5x - 3y = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = {4 \over {\rm{9}}}y - {1 \over 3} \hfill \cr
y = - {5 \over 3}x - {1 \over 3} \hfill \cr} \right.\)
Hai đường thẳng có hệ số góc \({4 \over 9} \ne - {5 \over 3}\) nên chúng cắt nhau
Hệ phương trình có một nghiệm duy nhất.
\(b)\left\{ \matrix{
2,3x + 0,{\rm{8}}y = 5 \hfill \cr
2y = {\rm{6}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - {{23} \over {\rm{8}}}x + {{25} \over 4} \hfill \cr
y = 3 \hfill \cr} \right.\)
Đường thẳng \(y = - {{23} \over 8}x + {{25} \over 4}\) cắt hai trục tọa độ
Đường thẳng y = 3 song song với trục hoành nên 2 đường thẳng trên cắt nhau
Hệ phương trình có 1 nghiệm duy nhất
\(c)\left\{ \matrix{
3x = - 5 \hfill \cr
x + 5y = - 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {5 \over 3} \hfill \cr
y = - {1 \over 5}x - {4 \over 5} \hfill \cr} \right.\)
Đường thẳng \(x = - {5 \over 3}\) song song với trục tung
Đường thẳng \(y = - {1 \over 5}x - {4 \over 5}\) cắt hai trục tọa độ nên 2 đường thẳng đó cắt nhau
Hệ phương trình có nghiệm duy nhất
\(d)\left\{ \matrix{
3x - y = 1 \hfill \cr
{\rm{6}}x - 2y = 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 1 \hfill \cr
y = 3x - {5 \over 2} \hfill \cr} \right.\)
Hai đường thẳng có hệ số góc bằng nhau bằng 3 có tung độ gốc khác nhau: \( - 1 \ne - {5 \over 2}\) nên chúng song song. Hệ phương trình đã cho vô nghiệm.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục