Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 11 trang 7 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
4.6 trên 5 phiếu

Hãy tìm mối liên hệ giữa các hằng số a, b, c và các hằng số a’, b’. c’.

Dựa vào vị trí tương đối giữa hai đường thẳng dưới đây, hãy tìm mối liên hệ giữa các hằng số a, b, c và các hằng số a’, b’. c’ để hệ phương trình

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} } \right.\)

a) Có nghiệm duy nhất

b) Vô nghiệm

c) Có vô số nghiệm

Áp dụng:

a) Hãy lập một hệ hai phương trình bậc nhất hai ẩn có nghiệm duy nhất

b) Hãy lập một hệ hai phương trình bậc nhất hai ẩn vô nghiệm

c) Hãy lập một hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm

Giải

Ta chia ra các trường hợp:

a) Trường hợp a, b, a’, b’ đều khác 0 

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{y = - {a \over b}x + {c \over b}} \cr 
{y = - {{a'} \over {b'}}x + {{c'} \over {b'}}} \cr} } \right.} \right.\)

1. Hệ phương trình có một nghiệm duy nhất khi hai đường thẳng đó cắt nhau tức là hai đường thẳng có hệ số góc khác nhau.   \({a \over b} \ne {{a;} \over {b'}} \Rightarrow {a \over {a'}} \ne {b \over {b'}}\)

2. Hệ phương trình đó vô số nghiệm khi hai đường thẳng đó song song. Tức là hai đường thẳng có hệ số góc bằng nhau và tung độ góc khác nhau

\(\left\{ {\matrix{
{{a \over b} = {{a'} \over {b'}}} \cr
{{c \over b} \ne {{c'} \over {b'}}} \cr} \Leftrightarrow {a \over {a'}} = {b \over {b;}} = {c \over {c'}}} \right.\)

 (nếu c’ ≠ 0) hoặc \({a \over {a'}} = {b \over {b'}} \ne {c \over {c'}}\) (nếu c ≠ 0)

3. Hệ phương trình có vô số nghiệm khi hai đường thẳng đó trùng nhau tức là hai đường thẳng có cùng hệ số góc và tung độ góc

\(\left\{ {\matrix{
{{a \over b} = {{a'} \over {b'}}} \cr
{{c \over b} = {{c'} \over {b'}}} \cr} \Leftrightarrow {a \over {a'}} = {b \over {b'}} = {c \over {c'}}} \right.\)

   hay \({a \over {a'}} = {b \over {b'}} = {c \over {c'}}\)

b) Trường hợp a = 0 và a’ ≠ 0

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{y = {c \over b}} \cr 
{y = - {{a'} \over b}x + {{c'} \over {b'}}} \cr} } \right.} \right.\)

     (với b’ ≠ 0)

Hoặc 

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{y = {c \over b}} \cr 
{x = {{c'} \over {a'}}} \cr} } \right.} \right.\)

          (với b’ ≠ 0)

Vì đường thẳng \(y = {c \over b}\) song song hoặc trùng với trục Ox, còn đường thẳng: \(y =  - {{a'} \over {b'}}x + {{c'} \over {b'}}\); đường thẳng \(x = {{c'} \over {a'}}\) luôn luôn cắt trục hoành nên hai đường thẳng đó luôn luôn cắt nhau. Hệ phương trình có nghiệm duy nhất.

c) Trường hợp a = a’ = 0 

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{y = {c \over b}} \cr 
{y = {{c'} \over {b'}}} \cr} } \right.} \right.\)

Hệ vô số nghiệm khi \({c \over b} \ne {{c'} \over {b'}}\)

Hệ có vô số nghiệm khi \({c \over b} = {{c'} \over {b'}}\)

d) Trường hợp b = 0 ; b’≠ 0

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{x = {c \over a}} \cr 
{y = - {{a'} \over {b'}}x + {{c'} \over {b'}}} \cr} } \right.} \right.\)

       (với a’ ≠ 0)

Hoặc 

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{x = {c \over a}} \cr 
{y = {{c'} \over {b'}}} \cr} } \right.} \right.\)

     (với a’ = 0)

Vì đường thẳng \(x = {c \over a}\) song song hoặc trùng trục tung Oy

Đường thẳng \(y =  - {{a'} \over {b'}}x + {{c'} \over {b'}}\); đường thẳng \(y = {{c'} \over {b'}}\) luôn cắt trục Oy nên hai đường thẳng đó luôn luôn cắt nhau. Hệ có một nghiệm duy nhất

e) Trường hợp b = b’ = 0

\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} \Leftrightarrow \left\{ {\matrix{
{x = {c \over a}} \cr 
{x = {{c'} \over {a'}}} \cr} } \right.} \right.\)

Hệ vô nghiệm khi hai đường thẳng đó song song: \({c \over a} \ne {{c'} \over {a'}}\)

Hệ có vô số nghiệm khi hai đường thẳng đó trùng nhau: \({c \over a} = {{c'} \over {a'}}\) 

Áp dụng: 

a) Hệ phương trình có một nghiệm duy nhất: 

\(\left\{ {\matrix{
{2x + 3y = 1} \cr
{3x - y = 3} \cr} } \right.\)

b) Hệ phương trình vô nghiệm: 

\(\left\{ {\matrix{
{2x + 3y = 1} \cr
{4x + 6y = 5} \cr} } \right.\)

c) Hệ phương trình có vô số nghiệm: 

\(\left\{ {\matrix{
{2x + 3y = 1} \cr
{4x + 6y = 2} \cr} } \right.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan