Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu III.2 trang 18 Sách bài tập (SBT) Toán 8 tập 2

Bình chọn:
3 trên 5 phiếu

Cho ba số a, b và c đôi một phân biệt. Giải phương trình

a. Cho ba số a, b và c đôi một phân biệt. Giải phương trình

\({x \over {\left( {a - b} \right)\left( {a - c} \right)}} + {x \over {\left( {b - a} \right)\left( {b - c} \right)}} + {x \over {\left( {c - a} \right)\left( {c - b} \right)}} = 2\)

b. Cho số a và ba số b, c, d khác a và thỏa mãn điều kiện c + d = 2b. Giải phương trình

\({x \over {\left( {a - b} \right)\left( {a - c} \right)}} - {{2x} \over {\left( {a - b} \right)\left( {a - d} \right)}} + {{3x} \over {\left( {a - c} \right)\left( {a - d} \right)}} = {{4a} \over {\left( {a - c} \right)\left( {a - d} \right)}}\)

Giải:

a. \({x \over {\left( {a - b} \right)\left( {a - c} \right)}} + {x \over {\left( {b - a} \right)\left( {b - c} \right)}} + {x \over {\left( {c - a} \right)\left( {c - b} \right)}} = 2\)

\(\eqalign{  &  \Leftrightarrow {{x\left( {c - b} \right) + x\left( {a - c} \right) + x\left( {b - a} \right)} \over {\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 2  \cr  &  \Leftrightarrow 0x = 2\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right) \cr} \)

Do a, b, c đôi một khác nhau nên . Vậy phương trình đã cho vô nghiệm.

b. \({x \over {\left( {a - b} \right)\left( {a - c} \right)}} - {{2x} \over {\left( {a - b} \right)\left( {a - d} \right)}} + {{3x} \over {\left( {a - c} \right)\left( {a - d} \right)}} = {{4a} \over {\left( {a - c} \right)\left( {a - d} \right)}}\)

\(\eqalign{  &  \Leftrightarrow {{x\left( {a - d} \right) - 2x\left( {a - c} \right) + 3x\left( {a - b} \right)} \over {\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}} = {{4a\left( {a - b} \right)} \over {\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}}  \cr  &  \Leftrightarrow x\left( {a - d - 2a + 2c + 3a - 3b} \right) = 4a\left( {a - b} \right)  \cr  &  \Leftrightarrow x\left( {2a - 3b + 2c - d} \right) = 4a\left( {a - b} \right)  \cr  &  \Leftrightarrow x\left( {2a - 3b + 2c - d} \right) = 4a\left( {a - b} \right) \cr} \)

Theo giả thiết, b + d = 2c nên 2a – 3b + 2c – d = 2a – 2b = 2 (a – b ). Do đó phương trình đã cho tương đương với phương trình

\(2\left( {a - b} \right)x = 4a\left( {a - b} \right)\)

Để ý rằng a – b ≠ 0, ta thấy ngay phương trình cuối có nghiệm duy nhất x = 2a. Vậy phương trình đã cho cũng có nghiệm duy nhất x =2a.

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan