Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 11 trang 40 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 11 trang 40 SBT Hình học 10 Nâng cao

Tam giác \(MNP\) có \(MN=4, MP=8,\) \(\widehat M = {60^0}\).Lấy điểm \(E\) trên tia \(MP\) và đặt \(\overrightarrow {ME}  = k\overrightarrow {MP} \). Tìm \(k\) để \(NE\) vuông góc với trung tuyến \(MF\) của tam giác \(MNP.\)

Giải

(h.28).

 

\(\begin{array}{l}\overrightarrow {NE}  = \overrightarrow {NM}  + \overrightarrow {ME}  = k\overrightarrow {MP}  - \overrightarrow {MN},\\\overrightarrow {MF}  = \dfrac{1}{2}(\overrightarrow {MP}  + \overrightarrow {MN} ).\\NE \bot MF\\ \Leftrightarrow(\overrightarrow {MP}  + \overrightarrow {MN} ).(k\overrightarrow {MP}  - \overrightarrow {MN} ) = 0\\\Leftrightarrow \,k = \dfrac{{\overrightarrow {MN} .(\overrightarrow {MP}  + \overrightarrow {MN} )}}{{\overrightarrow {MP} .(\overrightarrow {MP}  + \overrightarrow {MN} )}}\\ = \dfrac{{\overrightarrow {MN} .\overrightarrow {MP}  + {{\overrightarrow {MN} }^2}}}{{{{\overrightarrow {MP} }^2} + \overrightarrow {MN} .\overrightarrow {MP} }}\\ = \dfrac{{16 + 16}}{{64 + 16}} = \dfrac{2}{5}.\end{array}\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan