Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 21 trang 103 SBT Hình học 10 Nâng cao

Bình chọn:
2.8 trên 5 phiếu

Giải bài tập Bài 21 trang 103 SBT Hình học 10 Nâng cao

Một cạnh tam giác có trung điểm là \(M(-1 ; 1)\). Hai cạnh kia nằm trên các đường thẳng \(2x+6y+3=0\) và \(\left\{ \begin{array}{l}x = 2 - t\\y = t\end{array} \right.\). Lập phương trình đường thẳng chứa cạnh thứ ba của tam giác.

Giải

(h.98).

 

Cách 1:

Xét tam giác \(ABC\) với phương trình các cạnh

\(AB: 2x + 6y + 3 = 0 ,\)

\(AC: \left\{ \begin{array}{l}x = 2 - t\\y = t\end{array} \right.\)

Và \(M(-1 ; 1)\) là trung điểm của cạnh \(BC\). Khi đó, ta có hệ:

\(\left\{ \begin{array}{l}{x_B} + {x_C} =  - 2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\{y_B} + {y_C} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\2{x_B} + 6{y_B} + 3 = 0 \,\,\,\,\,\,\,\,\,(3)\\{x_C} = 2 - t \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(4)\\{y_C} = t \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(5)\end{array} \right.\)

Thay \(x_C, y_C\) từ (4), (5) vào (1) (2) và sau đó kết hợp với (3) ta được \(t =  \dfrac{7}{4}\). Do đó \(C = \left( { \dfrac{1}{4} ;  \dfrac{7}{4}} \right)\).

Suy  ra \(\overrightarrow {MC}  = \left( { \dfrac{5}{4} ;  \dfrac{3}{4}} \right) =  \dfrac{1}{4}(5 ; 3)\). Phương trình của đường thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - 1 + 5t'\\y = 1 + 3t'\end{array} \right.\).

Cách 2:

Từ phương trình của \(AB, AC\), ta tìm được tọa độ của \(A\) và suy ra tọa độ của \(D\) (\(D\) đối xứng với \(A\) qua \(M\)). \(M\) là trung điểm của \(BC\) và \(AD\) nên \(ABCD\) là hình bình hành, do đó \(DC //AB\). Từ đó viết được phương trình của \(DC\) và tìm được tọa độ của điểm \(C\). Cuối cùng viết được phương trình của \(MC\) (hay phương trình của \(BC\)).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan