Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 23 trang 103 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 23 trang 103 SBT Hình học 10 Nâng cao

Lập phương trình các đường thẳng chứa bốn cạnh của hình vuông \(ABCD\) biết đỉnh \(A(-1 ; 2)\) và phương trình của một đường chéo là \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y =  - 2t\end{array} \right.\).

Giải

(h.99).

 

\(A \in \Delta :  \left\{ \begin{array}{l}x =  - 1 + 2t\\y =  - 2t\end{array} \right.\).

Vậy  \(B, D \in \Delta \). \(\Delta \) có vec tơ chỉ phương \(\overrightarrow u (2 ;  - 2)\) nên phương trình đường chéo \(AC\) là

\(2(x + 1) - 2(y - 2) = 0\)

\(\Leftrightarrow    x - y + 3 = 0\).

Tọa độ giao điểm \(I\) của \(AC\) và \(BD\) ứng với nghiệm t của phương trình:

\( - 1 + 2t + 2t + 3 = 0      \Leftrightarrow    t =  -  \dfrac{1}{2}\).

Vậy \(I=(-2 ; 1)\). Vì \(I\) là trung điểm của \(AC\) nên \(C=(-3 ; 0)\).

\(ABCD\) là hình vuông nên \(ID=IA=IB\). Do \(B \in \Delta \) nên \(B = ( - 1 + 2t ;  - 2t)\).

\(\begin{array}{l}I{B^2} = I{A^2}   \\\Leftrightarrow    {( - 1 + 2t + 2)^2} + {( - 2t - 1)^2}\\ = {( - 1 + 2)^2} + {(2 - 1)^2}\\\Leftrightarrow {(2t + 1)^2} = 1\end{array}\)

\( \Leftrightarrow   t = 0\) hoặc \(t =  - 1\).

Suy ra \(B=(-1 ; 0)\) hoặc \(B=(-3 ; 2).\)

Nếu \(B=(-1 ; 0)\) thì \(D=(-3 ; 2),\) nếu \(B=(-3 ; 2)\) thì \(D=(-1 ; 0).\)

Đến đây, biết tọa độ bốn đỉnh của hình vuông \(ABCD\), ta sẽ dễ dàng viết được phương trình bốn cạnh của hình vuông là

\(x + 1 = 0 ;   y = 0 ; \) \(   x + 3 = 0 ;   y - 2 = 0 .\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan