Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 35 trang 11 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 35 trang 11 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) và đường thẳng \(d\). Tìm điểm \(M\) trên đường thẳng \(d\) sao cho vec tơ \(\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} \) có độ dài nhỏ nhất.

Giải

Với mọi điểm \(O\) ta có

\(\begin{array}{l}\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} \\ = \overrightarrow {OA}  - \overrightarrow {OM}  + \overrightarrow {OB}  - \overrightarrow {OM}  \\+ 2(\overrightarrow {OC}  - \overrightarrow {OM} )\\= \overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  - 4\overrightarrow {OM} .\end{array}\)

Ta chọn điểm \(O\) sao cho \(\overrightarrow v  = \overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = \overrightarrow 0 \).

(Chú ý rằng nếu G là trọng tâm tam giác ABC thì

\(\overrightarrow v  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OC}\)

\(  = 3\overrightarrow {OG}  + \overrightarrow {OC} \)

\( = 4\overrightarrow {OG}  + \overrightarrow {GC} \). Bởi vậy để \(\overrightarrow v  = \overrightarrow 0 \), ta chọn điểm O sao cho \(\overrightarrow {GO}  = \dfrac{1}{4}\overrightarrow {GC} \)).

Khi đó, \(\overrightarrow u  =  - 4\overrightarrow {OM} \) và do đó \(|\overrightarrow u | = 4OM\). Độ dài vec tơ \(\overrightarrow u \) nhỏ nhất khi và chỉ khi \(4OM\) nhỏ nhất hay \(M\) là hình chiếu vuông góc của \(O\) trên \(d.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan