Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\) biết \(A=(1 ; 3),\) \( B=(5 ; 6),\) \( C=(7 ; 0).\)
Giải
Gọi \(I(x,y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Ta có
\(\begin{array}{l}IA = IB = IC \Leftrightarrow \left\{ \begin{array}{l}I{A^2} + I{B^2}\\I{A^2} = I{C^2}\end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}{(x - 1)^2} + {(y - 3)^2} = {(x - 5)^2} + {(y - 6)^2}\\{(x - 1)^2} + {(y - 3)^2} = {(x - 7)^2} + {y^2}\end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}8x + 6y = 51\\12x - 6y = 39\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{9}{2}\\y = \dfrac{5}{2}\end{array} \right. \\ \Rightarrow I = \left( { \dfrac{9}{2} ; \dfrac{5}{2}} \right)\end{array}\)
Bán kính đường tròn :
\(R = IA\)
\(= \sqrt {{{\left( { \dfrac{9}{2} - 1} \right)}^2} + {{\left( { \dfrac{5}{2} - 3} \right)}^2}} \)
\(= \dfrac{{5\sqrt 2 }}{2}\).
Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là
\({\left( {x - \dfrac{9}{2}} \right)^2} + {\left( {y - {{ \dfrac{5}{2}}^{}}} \right)^2} = \dfrac{{25}}{2}\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục