Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 74 trang 115 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 74 trang 115 SBT Hình học 10 Nâng cao

Lập phương trình chính tắc của hypebol \((H)\) biết

a) Một tiêu điểm là \((5 ; 0)\), mọt đỉnh là \((-4 ; 0);\)

b) Độ dài trục ảo bằng \(12,\) tâm sai bằng \( \dfrac{5}{4};\)

c) Một đỉnh là \((2 ; 0),\) tâm sai bằng \( \dfrac{3}{2};\)

d) Tâm sai bằng \(\sqrt 2 \), \((H)\) đi qua điểm \(A(-5 ; 3);\)

e) \((H)\) đi qua hai điểm \(P(6 ;  - 1) ,  Q( - 8 ; 2\sqrt 2 )\).

Giải

Hypebol \((H)\) có phương trình chính tắc : \( \dfrac{{{x^2}}}{{{a^2}}} -  \dfrac{{{y^2}}}{{{b^2}}} = 1   (a > 0, b > 0)\).

a) \((5 ; 0)\) là một tiêu điểm  \( \Rightarrow c = 5;(-4 ; 0)\) là một đỉnh \( \Rightarrow   a = 4\).

\({b^2} = {c^2} - {a^2} = 25 - 16 = 9   \).

Phương trình của \((H)\) : \( \dfrac{{{x^2}}}{{16}} -  \dfrac{{{y^2}}}{9} = 1\).

b)

\(\begin{array}{l}2b = 12   \Rightarrow   b = 6 , \\  e =  \dfrac{5}{4}    \Leftrightarrow     \dfrac{c}{a} =  \dfrac{5}{4}   \\\Leftrightarrow    \dfrac{{{c^2}}}{{{a^2}}} =  \dfrac{{25}}{{16}}    \Leftrightarrow     \dfrac{{{a^2} + {b^2}}}{{{a^2}}} =  \dfrac{{25}}{{16 }} \\  \Leftrightarrow     \dfrac{{{a^2} + 36}}{{{a^2}}} =  \dfrac{{25}}{{16}}    \Rightarrow    {a^2} = 64\end{array}\)

Vậy phương trình của \((H)\):  \( \dfrac{{{x^2}}}{{64}} -  \dfrac{{{y^2}}}{{36}} = 1\)

c) \(a = 2 ,  e =  \dfrac{c}{a}    \Leftrightarrow  \dfrac{3}{2} =  \dfrac{c}{2}    \Leftrightarrow  c = 3\). Do đó \({b^2} = {c^2} - {a^2} = 5\).

Phương trình của \((H)\): \( \dfrac{{{x^2}}}{4} -  \dfrac{{{y^2}}}{5} = 1\)

d)

\(\begin{array}{l}e = \sqrt 2    \Leftrightarrow    \dfrac{c}{a} = \sqrt 2 \\   \Leftrightarrow   {c^2} = 2{a^2}   \Leftrightarrow   {a^2} + {b^2} = 2{a^2}  \\  \Leftrightarrow {a^2} = {b^{2   }}\,\,\,\,\,\,\,\,(1)\\A \in (H)    \Rightarrow    \dfrac{{25}}{{{a^2}}} -  \dfrac{9}{{{b^2}}} = 1\,\,\,\,\,\,\,\,(2)\end{array}\)

Từ (1) và (2) suy ra : \({a^2} = {b^2} = 16\).

Phương trình của (H): \( \dfrac{{{x^2}}}{{16}} -  \dfrac{{{y^2}}}{{16}} = 1\).

e)

\(P2 \in (H)  ,  Q \in (H)   \\ \Rightarrow    \left\{ \begin{array}{l} \dfrac{{36}}{{{a^2}}} -  \dfrac{1}{{{b^2}}} = 1\\ \dfrac{{64}}{{{a^2}}} -  \dfrac{8}{{{b^2}}} = 1\end{array} \right.    \Leftrightarrow   \left\{ \begin{array}{l}{a^2} = 32\\{b^2} = 8.\end{array} \right.\)

Phương trình của \((H)\): \( \dfrac{{{x^2}}}{{32}} -  \dfrac{{{y^2}}}{8} = 1\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan