Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 77 trang 115 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 77 trang 115 SBT Hình học 10 Nâng cao

Cho hypebol \((H):  \dfrac{{{x^2}}}{{{a^2}}} -  \dfrac{{{y^2}}}{{{b^2}}} = 1\). Chứng minh rằng tích các khoảng cách từ một điểm tùy ý trên \((H)\) đến hai đường tiệm cận bằng \( \dfrac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}\).

Giải

\((H)\) có hai tiệm cận là \({\Delta _1}: y =  \dfrac{b}{a}x\) hay \(bx - ay = 0\);  \({\Delta _2}: y =  -  \dfrac{b}{a}x\) hay \(bx + ay = 0\).

Xét \(M(x ; y)  \in (H)\) thì \( \dfrac{{{x^2}}}{{{a^2}}} -  \dfrac{{{y^2}}}{{{b^2}}} = 1\), hay \({b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}\). Khi đó

\(d(M ; {\Delta _1}).d(M ; {\Delta _2}) \)

\(=  \dfrac{{|bx - ay|}}{{\sqrt {{a^2} + {b^2}} }}. \dfrac{{|bx + ay|}}{{\sqrt {{a^2} + {b^2}} }}\)

\(=  \dfrac{{|{b^2}{x^2} - {a^2}{y^2}|}}{{{a^2} + {b^2}}} \)

\(=  \dfrac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan