Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 82 trang 116 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 82 trang 116 SBT Hình học 10 Nâng cao

Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} = 1\). Đường tròn \((C)\) cắt \(Ox\) tại \(A(-1 ; 0)\) và \(B(1 ; 0)\). Đường thẳng \(d\) có phương trình \(x = m ( - 1 < m < 1, m \ne 0)\) cắt \((C)\) tại \(M\) và \(N\). Đường thẳng \(AM\) cắt đường thẳng \(BN\) tại \(K\). Tìm tập hợp các điểm \(K\) khi \(m\) thay đổi.

Giải

(h.117).

 

Giả sử \(M = ({x_0} ; {y_0})\), suy ra \(N = ({x_0} ;  - {y_0})\). Do \( - 1 < m < 1,  m \ne 0\) nên \( - 1 < {x_0}, {y_0} < 1, {x_0} \ne 0,  {y_0} \ne 0\). Ta có:

Phương trình đường thẳng \(AM:  \dfrac{{x + 1}}{{{x_0} + 1}} =  \dfrac{y}{{{y_0}}}\)        (1)

Phương trình đường thẳng \(BN:  \dfrac{{x - 1}}{{{x_0} - 1}} =  \dfrac{y}{{ - {y_0}}}\)         (2)

Tọa độ \((x ; y)\) của \(K\) thỏa mãn (1) và (2). Nhân từng vế của (1) và (2) với nhau, ta được : \( \dfrac{{{x^2} - 1}}{{x_0^2 - 1}} =  \dfrac{{{y^2}}}{{ - y_0^2}}\). Vì \(M \in (C)\) nên \(x_0^2 + y_0^2 = 1\), suy ra \(x_0^2 - 1 =  - y_0^2\). Do đó \({x^2} - 1 = {y^2}\) hay \({x^2} - {y^2} = 1\). Tập hợp các điểm \(K\) là hypebol \( \dfrac{{{x^2}}}{1} -  \dfrac{{{y^2}}}{1} = 1\) bỏ đi hai đỉnh : \((-1 ; 0)\) và \((1 ; 0).\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan