Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 97 trang 121 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 97 trang 121 SBT Hình học 10 Nâng cao

Một đường thẳng đi qua tiêu điểm \(F(c ; 0)\) của elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\)  \((a>b>0)\) và cắt nó tại hai điểm \(A, B\). Chứng minh rằng đường tròn đường kính \(AB\) không có điểm chung với đường chuẩn :\(x =  \dfrac{a}{e}\).

Giải

(h.126).

 

Gọi \(I\) là trung điểm của \(AB; A’, B’, I’\) lần lượt là hình chiếu của \(A, B, I\) trên đường chuẩn \({d_2}:  x =  \dfrac{{{a^2}}}{c}\).

Ta sẽ chứng minh:

\(II' >  \dfrac{{AB}}{2}   \Leftrightarrow   AA' + BB' > AB\).

Ta có

\(AB = AF + BF = e.AA' + e.BB' \)

\(= e(AA' + BB') < AA' + BB' = 2II'\) (do \(e<1\)). Suy ra điều cần chứng minh.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan